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Chapter 1

Problems

1.1 GJMO Problems
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J-1. Find the minimum possible value of the natural number x, such that:

• x > 2021 and

• There is a positive integer y, co-prime with x, such that x2−4xy+5y2 is a perfect
square

J-2. In phoenix, a Galaxy far, far away, there are 2021 planets. Define a fire to be a path
between two objects in phoenix. It is known that between every pair of planets either
a single fire burns or no burning occurs. If we consider any subset of 2019 planets, the
total number of fires burning between these planets is a constant. If there are F fires
in phoenix, then find all possible values of F .

J-3. Let ABC be a triangle with sides a,b,c and let ra,rb,rc denote the radii of the excircles
of triangle ABC. If R denotes the circumradius of triangle ABC then prove that

4[ABC]√
ab+

√
bc+
√

ca
≤ R2

∑
hc

ra · rb

(
cos

A
2

)4

where h denotes altitude , [x] denotes area of x
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J-4. On the board n positive integers are written, let them be a1,a2, . . . ,an. Let p,q be two
prime numbers such that p 6= q. We are allowed to execute infinitely many times the
following procedure: We pick two numbers a,b written on the board, we delete them
and replace them with pa−qb, pb−qa. After 2021 applications of this procedure, let k
be the product of all numbers on the board that time. If we know that k(p−1)(q−1) 6≡ 1
(mod pq), then prove that there exists a i ∈ {1,2, . . . ,n}, such that either p|ai or q|ai.

J-5. In a 4ABC, let K be the intersection of the A-angle bisector and BC. Let H be the
orthocenter of 4ABC. If the line through K perpendicular to AK meets AH at P, and
the line through H parallel to AK meets the A-tangent of (ABC) at Q, then prove that
PQ is parallel to the A-symmedian.

Note: The A-symmedian is the reflection of the A-median over the A-angle bisector.

J-6. Let S = {1,2, . . . ,n}, with n≥ 3 being a positive integer. Call a subset A of S gaussian
if |A| ≥ 3 and for all a,b,c ∈ A with a > b > c,

a2

b2 +
b2

c2 +
c2

a2 < 5

holds true.

(i) Prove that |A| ≤
⌊n+2

2

⌋
for all gaussian subsets A of S.

(ii) If a gaussian subset of S contains exactly
⌊n+2

2

⌋
elements, then find all possible

values of n.
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1.2 GAMO Problems

A-1. Let a,b > 1 be any two distinct positive integers. You are given these two quantities:

a
1
and

1
a

You are allowed to apply any of these three operations:

• You can add or subtract any positive integer onto/from the numerators of both
the quantities (simultaneously).

• You can add or subtract any positive integer onto/from the denominators of both
the quantities (simultaneously)

• You can reduce any quantity to it’s lowest form (You need not reduce both quan-
tities simultaneously).

• You can interchange the position of the two quantities.

Note that the numerator is always non-negative and the denominator positive at any
point. Determine whether it is possible to attain the following configuration of b

1 and 1
b

from the current one by a finite (possibly empty) sequence of such operations.

A-2. Find all polynomials P(x) with integer coefficients which satisfy the following conditions

• P(n) is a positive integer for any positive integer n.

• P(n)! divides
n

∏
k=1

(
2P(k)+k−1−2k−1

)
for all positive integers n.

A-3. Let ABC be a triangle with incenter I and Nagel Point N. Let N′ be the reflection of
N on BC. Let D be on the circumcircle of ABC such that AD ⊥ BC. Let the circle
with diameter AI intersect the circumcircle of ABC at S 6= A. Let M be the midpoint of
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the arc BC not containing A and let AN intersect the circumcircle of ABC at X . Then
MX ,BC and the perpendicular from N′ onto SD concur.

Note: The Nagel point of a triangle ABC is defined as the intersection point of the
cevians joining the corresponding vertex to the point where the respective excircle touch
the side opposite to that vertex
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A-4. Let n≥ 1 be a positive integer, and let S ⊂ 0,1,2, . . . ,n such that

|S | ≥ n
2
+1.

Show that some power of 2 is either an element of S or the sum of two distinct elements
of S .

A-5. Let ABC be an acute, non-isosceles triangle, AD,BE,CF be its heights and (c) its cir-
cumcircle. FE cuts the circumcircle at points S,T , with point F being between points
S,E. In addition, let P,Q be the midpoints of the major and the minor arc BC, re-
spectively. Line DQ cuts (c) at R. The circumcircles of triangles RSF,T ER,SFP and
T EP cut again PR at points X ,Y,Z and W , respectively. Suppose (`) is the line pass-
ing through the circumcenters of triangles AXW,AY Z and (`B),(`C) the parallel lines
through B,C to (`). If (`B) meets CF at U and (`C) meets BE at V , then prove that
points U,V,F,E are concyclic.

A-6. Find all functions f : Z→ Z such that for all integers x,y,

f (x2 + f (y))+ f (y f (x)) = f (x) f (x+ y)+ f (y)
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Chapter 2

GAMO Solution
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2.1 Problem 1 proposed by EpicNumberTheory

Let a > 1 be any positive integer. You are given these two quantities:
a
1
and

1
a

You are allowed to apply any of these three operations: You can add or subtract any positive
integer onto/from the numerators of both the quantities (simultaneously) You can add or sub-
tract any positive integer onto/from the denominators of both the quantities (simultaneously)
You can reduce any quantity to it’s lowest form (You need not reduce both quantities simul-
taneously) You can interchange the position of the two quantities Note that the numerator
is always non-negative and the denominator positive at any point. Determine whether it is
possible to attain the following configuration:

b
1
and

1
b

from the current one by a finite (possibly empty) sequence of such operations.

We would use the + sign between the fractions instead of , but it won’t matter. The Answer
to the problem is a very positive YES .

Claim 1: Let d(n) be any divisor of n. Then you can obtain d(n−1)+1
1 + 1

1 from n
1 +

1
1 . Proof:

n
1 +

1
1 →

n+k
1+k +

k
k →

n+k
1+k +

1
1 . Now if k+1 | n+ k then k+1 | n−1. Choose such a k. Then

n+k
1+k +

1
1 →

d(n−1)+1
1 + 1

1 where d(n−1) is some divisor of n−1. But since we can choose k+1
to be any divisor of n−1, d(n−1) can take all the divisor values of n−1. Hence proven. ˜

Claim 2: n
1 +

1
1 →

n′
1 + 1

1 for some n′ < n. Proof: We would show this by strong induction.
Now for the base case we would show that this is true for 3: 3

1 +
1
1 →

4
1 +

2
1 →

4
2 +

2
2 →

2
1 +

1
1 .

Hence shown. Now there always exists a divisor d(n−1) of n−1 such that d(n−1)< n−1
if n−1 > 2. So by Claim 1 this Claim is shown as well. ˜.

So if one obtains l
1 +

1
1 then one can obtain 2

1 +
1
1

Claim 3: You can reach n
1 +

1
1 from 2

1 +
1
1 for any n > 1

Proof: 2
1 +

1
2 →

4
1 +

3
2 →

4
2 +

3
3 →

2
1 +

1
1 Now we would be proving that for any n > 1: n

1 +
1
1

can be obtained from 2
1 +

1
1 .

2
1 +

1
1→

k+1
k + 1

1→
(k−1)+k+1

k + k
1→

2
1 +

k
1→

1
1 +

k−1
1 →

k−1
1 + 1

1 .
Hence shown. ˜

Claim 4: If you can reach n2

1 + 1
1 then you can reach n

1 +
1
n Proof: n2

1 + 1
1 →

n2

n + 1
n →

n
1 +

1
n ˜

Now since obtaining 2
1 +

1
1 finishes the problem as per the claims it suffices to show that it

is possible to obtain K
1 + 1

1 from c
1 +

1
c where c is any positive integer and K is some positive

integer depending on c. But c
1 +

1
c →

2c−1
1 + 1

1 . Hence we have shown that the answer to the
problem is a very positive YES .
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2.2 Problem 2 proposed by Aritra12, TLP.39, Orestis
Lignos

Find all polynomials P(x) with integer coefficients which satisfy the following conditions:

• P(n) is a positive integer for any positive integer n.

• P(n)!|
n

∏
k=1

(
2P(k)+k−1−2k−1

)
for all positive integers n.

First, we notice that since P(k) + k− 1 > k− 1 for any positive integer k, we must have
ν2

(
2P(k)+k−1−2k−1

)
= k−1 for all positive integers k. Thus, the 2-adic order of the dividend

in the second condition must always be 2
n(n−1)

2 .

Thus, ν2(P(n)!)≤ n(n−1)
2 . Since ν2(P(n)!) = P(n)− s2(P(n))≥ P(n)− log2(P(n)+1), where

s2(P(n)) is the sum of digits of P(n) in its binary representation, we must have 0 < P(n) ≤
n2−n

2 + log2(P(n)+1) for all positive integers n.

As log2(P(n)+1)< n for all sufficiently large n, the inequality is only possible when P(x) is a
linear polynomial.

This means that by finding the value of P(n) for small n could lead to full set of solutions. In
particular, only finding all possible values of P(1) and P(2) is enough.

When n = 1, the second condition implies that P(1)!|2P(1)−1. Since the dividend is odd, we
must have P(1) = 1.

When n = 2, the second condition implies that P(2)!|2
(

2P(2)−1
)
. Since the dividend is not

divisible by 4, we must have P(2)≤ 3. Since 3! - 2
(
23−1

)
, we must have P(2)≤ 2.

If P(2) = 1, then we have P(x) = 1 which is clearly a solution.

If P(2) = 2, then we have P(x) = x. It’s not clear if this works, so we shall prove that this
polynomial is indeed a solution.

What we need to prove is that

n!|2
n(n−1)

2

n

∏
k=1

(
2k−1

)

In other word, we need to prove that νp(n!) ≤ νp

(
2

n(n−1)
2

)
+∑

n
k=1 νp

(
2k−1

)
for any prime

p.
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For p= 2, we have ν2(n!)< n =⇒ ν2(n!)≤ n−1≤ n(n−1)
2 = ν2

(
2

n(n−1)
2

)
. Thus, the inequality

is true in this case.

For p > 2, since ordpk(2) ≤ ϕ(pk) < pk for any power pk of p, at least b n
pk c terms in the

summation will have values of at least k. Thus, ∑
n
k=1 νp

(
2k−1

)
≥∑

∞
k=1b n

pk c= νp(n!). Thus,
the inequality is also true in this case.

Hence, we can conclude that P(x)≡ x is the second and last solution.
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2.3 Problem 3 proposed by Anonymous

Let ABC be a triangle with incenter I and Nagel Point N. Let N′ be the reflection of N on
BC. Let D ∈�(ABC) such that AD⊥ BC. Let �(AI)∩�(ABC) = S. Let M be the midpoint
of B̂C not containing A and let AN ∩ (ABC) = X . Then MX ,BC and the perpendicular from
N′ onto SD concur.

Note: Nagel point of a 4ABC is defined as the intersection point of the cevians joining the
corresponding vertex to the point where the respective excircle touch the side opposite to that
vertex.

Reflect over the perpendicular bisector of BC. Let MA be the midpoint of BC. N′ goes to
N∗, the reflection of N over BC. S goes to a point S′, and D goes to A′, the antipode of A on
(ABC). X goes to TA, the A-mixtilinear touchpoint.

Since AN = 2∗ IM and AN||IM, AI∩NM is both the reflection of A over I and the reflection
of N over M. It is well known (enough) that MTA∩BC, which can be denoted as T , is such
that ]AIT = 90 and A− S− T . It suffices to show that the line through I parallel to AS′

bisects AT .

Let P be the midpoint of AT . Let L be the antipode of M on (ABC). A(M,L;S′,S) =−1 =
(A,T ;P,P∞) = I(A,T ;P,P∞). Since A− I−M,AL || T I, IP∞||AS, IP || AS′, as desired.
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2.4 Problem 4

Let n≥ 1 be a positive integer, and let S ⊂ 0,1,2, . . . ,n such that

|S | ≥ n
2
+1.

Show that some power of 2 is either an element of S or the sum of two distinct elements of
S .

We prove this by using induction on n. It is easy to check that the result is true for n = 1,2,3,
and 4. Let n > 4, and assume that the result holds for all postive integers m < n. Now choose
s > 2 such that

2x ≤ n < 2s+1

and let r = n−2s ∈ {0,1, . . . ,2x−1} . Let

S1 = S∩{0, . . . ,2s− r−1}

and
S2 = S∩{2x− r,2s− r+1, . . . ,2n + r}

Then S is the disjoint union of S1 and S2, and |S|= |S1|+ |S2|.

Suppose that the statement is false for the set S. Then |S| ≥ n
2 + 1, but no power of 2

belongs to S or is the sum of two distinct elements of S. It follows that 2s /∈ S2 and, for each
i = 1,2, . . . ,r, the set S2 contains at most one of the two integers 2s− i,2s + i. Therefore,
|S2| ≤ r.

If n = 2s+1−1, then r = 2x−1 and S1 ⊆ {0}. Thus, |S1| ≤ 1. Now, it follows that

n
2
+1≤ |S| ≤ 1+ r = 2s =

n+1
2

which is impossible.

Similarly, if 2s ≤ n < 2s+1− 1, then 0 ≤ r < 2s− 1 and m = 2x− r− 1 ≥ 1. Since the set S
contains S1, then no power of 2 belongs to S1 or is the sum of two distinct elements of S1. By
the induction hypothesis, we have

|S1|<
m
2
+1 =

2s− r−1
2

+1

and
n
2
+1≤ |S|= |S1|+ |S2|<

2x− r−1
2

+1+ r =
n+1

2
which is also impossible.
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2.5 Problem 5 proposed by Orestis Lignos

Let ABC be an acute, non-isosceles triangle, AD,BE,CF be its heights and (c) its circumcircle.
FE cuts the circumcircle at points S,T , with point F being between points S,E. In addition,
let P,Q be the midpoints of the major and the minor arc BC, respectively. Line DQ cuts (c)
at R. The circumcircles of triangles RSF,T ER,SFP and T EP cut again PR at points X ,Y,Z
and W , respectively. Suppose (`) is the line passing through the circumcenters of triangles
AXW,AY Z and (`B),(`C) the parallel lines through B,C to (`). If (`B) meets CF at U and
(`C) meets BE at V , then prove that points U,V,F,E are concyclic.

Let H be the orthocenter of triangle ABC and M be the midpoint of BC. The proof is based
on the following crucial Claim:

Claim— MH ‖ (`)

Proof: Let, N ≡ FE ∪BC and N′ ≡ PR∪BC. Note, that

\N′RD = 180◦−\PRQ = 90◦

and
\BRD = \BAQ = \QAC = \DRC,

hence DR and DN′ are the two bisectors (internal and external) of angle \BRC, hence
(N′,B,D,C) =−1.

In addition, using the complete quadrilateral AFDE.BC, we deduce that (N,B,D,C) = −1.
Therefore, we conclude that N ≡ N′, i.e. PR,FE,BC concur.

Thus,
NR ·NP = NB ·NC = NF ·NE,

which implies that PRFE is cyclic.

Now, note that
\SXW = \RFE = \EPW = 180◦−\ETW,

which implies that SXWT is cyclic. Let NA cut (c) at point K. Note, that

NK ·NA = NS ·NT = NX ·NW,

hence K belongs to the circumcircle of triangle AXW . In a similar manner, we deduce that
K belongs to the circumcircle of triangle AY Z. Therefore, AK is the radical axis of the two
circles, hence AK ⊥ (`).

What remains, therefore, to be proved is AK ⊥ HM, which is well-known to be true. Indeed,
considering circles (A,D,M) and (B,F,E,C), then:
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• The line passing through their centers coincides with AM (the center of the first circle is the
midpoint of AM while for the second it is point M).
• H belongs to their radical axis, since HA ·HD = HF ·HC
• N belongs to their radical axis, since ND ·NM = NF ·NE (quadrilateral FEMD is cyclic to
the Euler circle).

Therefore, NH ⊥ AM, and since AH ⊥ MN, H is the orthocenter of triangle AMN, which
implies that MH ⊥ AN.

Now, note that
NK ·NA = NB ·NC = NF ·NE,

hence points A,K,F,E are concyclic, therefore all points A,F,H,E,K are concyclic, hence

\HKA = \HFA = 90◦,

that is HK ⊥ NA.

So, MH ⊥ NA and HK ⊥ NA, hence points K,H,M are collinear, which implies the desired ¨

To the problem, since MH ‖ (`), we deduce that MH ‖ BU ‖CV , and since M is the midpoint
of BC, H is the midpoint of UC and BV , hence we infer that UVCB is a parallelogram.
Therefore,

\UV E = 180◦−\UV B = 180◦−\V BC = 180◦−\EFC = \UFE,

which implies that UFV E is cyclic, and the proof concludes.
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2.6 Problem 6 proposed by EpicNumberTheory

Find all functions f : Z→ Z such that for all integers x,y,

f (x2 + f (y))+ f (y f (x)) = f (x) f (x+ y)+ f (y)

All functions satisfying the following F.E. are:

S1: f (x) = x ∀x ∈ Z

S2: f (x) = 0 ∀x ∈ Z

S3: f (x) = 1 ∀x ∈ Z

S4: f (x) = x mod 2 ∀x ∈ Z

which indeed work. Now we would show that these are the only solutions. Let P(x,y) denote the
assertion in the given problem. P(0,0) =⇒ f ( f (0)) = f (0)2 P(x,0) =⇒ f (x2+ f (0)) = f (x)2

P(−x,0) =⇒ f (x2 + f (0)) = f (−x)2 Comparing we get f (x) =±− f (−x)

Now we would be establish ’psuedo periodicity’:
Now let t be such that f (t) = f (−t) and f (t) 6= 0. P(t, t)− P(−t, t) =⇒ f (2t) = f (0)
P(x,0) =⇒ f (x2 + f (0) = f (x)2 So P(x,2t) =⇒ f (x)2 + f (2t f (x)) = f (x) f (x+ 2t)+ f (0)
P(t,−t)− P(−t,−t) =⇒ f (−2t) = f (0) = f (2t). So if f (t) = f (−t) 6= 0 then f (2t) =
f (−2t) = f (0). P(t,2t)−P(−t,2t) =⇒ f (3t) = f (t). And inductively we can obtain f (t) =
f (3t) = f (5t) = . . . and f (2t) = f (4t) = f (6t) = . . . where f (kt) = f (−kt) for any integer k.
(So f (2t f (x)) = f (2t) = f (0)) So P(x,2t) =⇒ f (x)2+ f (2t f (x)) = f (x) f (x+2t)+ f (0) =⇒
f (x)2 = f (x) f (x+2t). So if f (x) 6= 0 then f (x) = f (x+2t).

Case 1: There doesn’t exist a z such that f (z) = 0.

So f is periodic with period 2t. Let t be such that this period is minimum. (Sometimes
we would be using it as minimum and sometimes not, it should be clear from the context)
First of all if t is even then t2 ≡ 0 mod2t Now we would have two cases depending on the
parity of f (t) and in both cases supposing t to be even because there always exists some even
t.

Suppose for some t is even and f (t) is odd. P(t, t) =⇒ f ( f (t))+ f (t f (t)) = f (t) f (0)+ f (t)
P(2t, t) =⇒ f ( f (t))+ f (t f (0)) = f (t) f (0)+ f (t) =⇒ f (t f (t)) = f (t f (0)). If f (0) is even
then f (t f (t)) = f (0) which means that f (t) = f (0) .Then consider k = t/2 (t is even). Note
that f (k) =− f (−k) (Because if f (k) = f (−k) then we could never find minimal t such that
f (t) = f (−t) which means that t is zero.This means that their doesn’t exist any non-zero t such
that f (t) = f (−t) Which would mean that f is odd ). P(k,k)−P(−k,k) =⇒ f (k f (k))−
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f (−k f (k)) = 2 f (k) f (0) Now f (k f (k)) 6= f (− f (k)) because otherwise there would exist a
zero. So we have: f (k f (k)) = f (k) f (0). P(k,k) =⇒ f (k2 + f (k))+ f (k f (k)) = f (k) f (0)+
f (k) =⇒ f (k2 + f (k)) = f (k) P(−k,k) + P(k,−k) =⇒ f (k2 + f (k)) + f (k2 + f (−k)) +
2 f (−k f (k)) = 0 P(k,k) + P(−k,−k) =⇒ f (k2 + f (k)) = f (k2 + f (−k)) + 2 f (k f (k)) = 0.
Comparing the above two we get: f (−k f (k)) = − f (k f (k)) = f (k f (k)) =⇒ there exists a
zero. Contradiction!

So f (0) is odd. So f (t f (0)) = f (t). P(2t, t) =⇒ f ( f (t)) is even. Now choose any t ′

such that f (t ′) = f (−t ′) 6= 0 so f (2t ′) = f (−2t ′) So f ( f (2t)) is even which means f ( f (0))
or f (0)2 or f (0) is even which is a contradiction.

Suppose for some t is even and f (t) is even. P(t, t) =⇒ f ( f (t))+ f (0) = f (t) f (0)+ f (t)
P(2t, t) =⇒ f ( f (t))+ f (t f (0)) = f (t) f (0)+ f (t) Suppose f (0) is odd. (And so is f (t f (0)))
But P(2t, t) just means that f ( f (t)) and f (t) have the same parity i.e. even. But P(t, t) leads
to a contradiction.
Now f (0) is even. P(t,0) =⇒ f (0)2 = f (t)2 =⇒ f (t) ∈ { f (0),− f (0)} If f (t) = f (0) then
consider k = t/2 (t is even). Note that f (k) = − f (−k) (Because if f (k) = f (−k) then we
could never find minimal t such that f (t) = f (−t) which means that t is zero.This means
that their doesn’t exist any non-zero t such that f (t) = f (−t) Which would mean that f is
odd ). P(k,k)−P(−k,k) =⇒ f (k f (k))− f (−k f (k)) = 2 f (k) f (0) Now f (k f (k)) 6= f (− f (k))
because otherwise there would exist a zero. So we have: f (k f (k)) = f (k) f (0). P(k,k) =⇒
f (k2+ f (k))+ f (k f (k)) = f (k) f (0)+ f (k) =⇒ f (k2+ f (k)) = f (k) P(−k,k)+P(k,−k) =⇒
f (k2 + f (k)) + f (k2 + f (−k)) + 2 f (−k f (k)) = 0 P(k,k) + P(−k,−k) =⇒ f (k2 + f (k)) =
f (k2+ f (−k))+2 f (k f (k)) = 0. Comparing the above two we get: f (−k f (k)) =− f (k f (k)) =
f (k f (k)) =⇒ there exists a zero. Contradiction!

So f (t) = − f (0). So f (− f (0)) = − f (0)2− 2 f (0) (By P(t, t)) P(t, f (0)) =⇒ f ( f (0)2) =
− f (− f (0)2) P( f (0),0) =⇒ f ( f (0)2 + f (0)) = f (0)4 P(− f (0),0) =⇒ f ( f (0)2 + f (0))+
f (0) = f (− f (0))2 + f (0) = =⇒ f (− f (0)) = ± f (0)2 So ± f (0)2− f (0)2− 2 f (0) = 0 =⇒
f (0) ∈ {0,1} =⇒ f (0) = 1 (Since there does not exist a z such that f (z) = 0)

Claim 1: If f (0) = 1 then f (x) = 1 ∀x ∈ Z
Proof: Suppose f (0) = 1. Then f ( f (0)) = f (0)2 =⇒ f (1) = 1 P(1,0) =⇒ f (1+ f (0)) =
f (1)2 =⇒ f (2) = 1. P(1,2) =⇒ f (2) = f (3) =⇒ f (3) = 1 and inductively (Use P(1,k)
repeatedly for induction) f (x) = 1 ∀x ∈N. By using f (x)2 = f (−x)2 we have that f (v) =±1
for negative v. So let v such that f (v) = 1 and w such that f (w) =−1. P(0,x) =⇒ f ( f (x)) =
f (x). So if x→ w then f (−1) =−1. Choose v >| w |. P(−1,v) =⇒ 0 f (−v) =− f (v−1) =
−1. But v can be any positive integer. So f (x) =−1 ∀x < 0 ∈ Z. But P(2020,−2021) =⇒
1 = f (−1) which is a contradiction. So there doesn’t exist any negative integer w such that
f (w) =−1 so f (x) = 1∀x ∈ Z

Now we don’t need to consider t odd since we have completed the case where there is just the
existence of a an even t such that f (t) is even too. So now we need to consider that there
does not exist any such even t. But this cannot occur since always f (2t) = f (−2t).

Case 2: There exists a z such that f (z) = 0. Comparing P(z,0) and P(−z,0) shows that
f (z)2 = f (−z)2 = 0 P(z,z) =⇒ f (z2) = 0 P(−z,z) =⇒ f (0) = 0.
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Claim 2: If f (0) = 0 then f (x) = x.
Proof: P(1,0) =⇒ f (1) ∈ {0,1} Suppose f (1) = 0. Further suppose there exists a u such
that f (u) 6= 0. P(u,1) =⇒ f (u)+1 = f (u+1). P(1,u) =⇒ f (u+1) = f (u) which is wrong.
(We used f ( f (u)+1) = f ( f (u+1)) = f (u+1)) So there doesn’t exist a u such that f (u) 6= 0
or we have that f ≡ 0 .

Now we have that f (1) = 1. Clearly f (−1) ∈ {−1,1}. Suppose f (−1) = 1. P(−1,1) =⇒
f (2) = 0. P(1,2) =⇒ f (3) = 1. P(1,3) =⇒ 0= f (4) and by induction we get f (x) = x mod2
for all non-negative x. P(−1,−1) =⇒ 0 = f (−2). P(−1,−2) =⇒ 1 = f (−3) and by induc-
tion we have showed that f (x) = x mod2 ∀x ∈ Z.

Now we have f (−1) =−1. P(−1,1) =⇒ f (2) = 2. P(−1,2) =⇒ f (3)+ f (−2) = 1. Sup-
pose P(1,−2) =⇒ f (3) =−1 =⇒ 1 = 2+ f (−2). So f (−2) =−2 and so f (3) = 3 and so
inductively f (x)= x ∀x∈N.Let w be a negative integer. So by comparing P(w,0) =⇒ f (w)2 =
w2 = f (−w)2 =⇒ f (w) =±w. Let w be such that f (w) = w and v such that f (v) =−v (v
is also a negative integer here). P(w,1) =⇒ w2 +w = w f (w+1) =⇒ f (w+1) = w+1. So
every negative integer ≥ w has f (w) = w. Now w≤−1. So f (−1) =−1 (If there exists such
w). P(w,−1) =⇒ w2−w=w f (w−1) =⇒ f (w−1) =w−1 so we have f (x) = x ∈ Z . Now
we have the case that for all negative integers v we have f (v) =−v. So P(0,w) =⇒ 0 = w2

which is absurd.

Now suppose there doesn’t exist any t such that f (t) = f (−t) and f (t) 6= 0. So for any t such
that f (t) = f (−t) we have that f (t) = 0. But then f (t) = − f (−t) = 0. So f is odd too.
But for the rest of the integers we have f (x) =− f (−x). So we have f (x) =− f (−x) for all
non-zero integers. And so we will consider f odd now.

Now we assume f (0) = 0.
A new assertion: P(x,y)−P(−x,y) =⇒ f (y f (x))− f (−y f (x)) = f (x)( f (x+y)+ f (−x+
y)) =⇒ 2 f (y f (x)) = f (x)( f (x+ y)+ f (−x+ y)) Let this be denoted by Q(x,y).
Another assertion Q(x,1) =⇒ 2 f (x) = f (x)( f (x + 1)− f (x− 1)) Suppose for some x,
f (x) 6= 0. So f (x+ 1)− f (x− 1) = 2 =⇒ 2 = f (x+ 1) + f (1− x). Let this be denoted
by R(x) (Only true if f (x) 6= 0)
f (0) = − f (0) =⇒ f (0) = 0. P(0,x) =⇒ f ( f (x)) = f (x) P(1,0) =⇒ f (1) = f (1)2 =⇒
f (1) = 0 or 1.

Subcase 1: f (1) = 0. P(1,x) =⇒ f ( f (x)+ 1) = f (x) = f ( f (x)). This holds for all inte-
gers x. But since f is odd we have that f (− f (x)) = − f ( f (x)) = − f (x). P(x,−1) =⇒
f (x)2 + f (− f (x)) = f (x) f (x−1) =⇒ f (x)( f (x)−1) = f (x) f (x−1). So shifting x→ 2 =⇒
f (2) ∈ {2,1}. But f ( f (2)) = f (2). So if f (2) = 1, then we would have a contradiction
( f (1) = 1). So f (2) = 0. So by induction we can have that f (x) ∈ {0,1}. But f ( f (x)) = x
would imply that f (x) = 0. Combining this with f odd we get that f (x) = 0∀x ∈ Z.

Subcase 2: f (1) = 1. R(1) =⇒ f (2) = 2. R(2) =⇒ f (3) = 3. R(3) =⇒ f (4) = 4.
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R(4) =⇒ f (5) = 5 and inductively f (x) = x ∀x ∈ Z (Since f is odd).

We are left with the case where f (0) 6= 0. We have to subcases.

One is that there exists a root h of f . P(h,x) =⇒ f (h2 + f (x)) = f (x)− f (0). This implies
that k− f (0) is inrange of f whenever k also is. Thus, −n f (0) is in the range of f for any
n≥−1. Since −n f (0) 6= f (0) for any n≥ 0, n f (0) must also be in the range for n≥ 0. Thus,
n f (0) is in the range for any integer n.

Hence, f (h2 + n f (0)) = (n− 1) f (0) for any integer n. Thus, P(h+ n f (0),0) =⇒ (2hn+
n2 f (0)) f (0) = f (h2 + (2hn+ n2 f (0) + 1) f (0)) = f (h+ n f (0))2. This means that (2hn+
n2 f (0)) f (0) is always perfect square no matter what integer n is. This is impossible.

Else, 0 is not in the range of f . In this case, for any x,y such that x 6= 0,y 6= 0,x+ y 6= 0,
P(x,y) and P(−x,−y) implies that f (x2 + f (y))− f (x2− f (y)) = 2 f (y). We denote this with
Q(x,y).

Since f (x2 + f (0)) = f (x)2, for any x such that x2 + f (0) 6= 0 and f (x) + x2 + f (0) 6= 0,
Q( f (x),x2 + f (0)) =⇒ f (2 f (x)2) = f (0)+2 f (x)2.

Back to the original equation. For any x,y 6= 0, P(x,y) and P(−x,y) imply that 2 f (y f (x)) =
f (x)( f (y+x)+ f (y−x)). Substituting y→ 2 f (x) imply that for any x 6= 0, either f (x)|2 f (0),
x2 + f (0) = 0, or f (x)+ x2 + f (0) = 0.

Thus, either f has finite range (which has been cleared) or there are infinitely many x such
that f (x) is a perfect square larger that |2 f (0)| and − f (0). In this case, f (x)|2 f (0) and
f (x)+ x2 + f (0) = 0 cannot be true, and x2 + f (0) = 0 may be true for at most two cases.
Thus, the statement ’for all x, either f (x)|2 f (0), x2+ f (0) = 0, or f (x)+x2+ f (0) = 0’ cannot
be true. Hence the last case has no solution.

Aliter: Let P(x,y) denotes the equation.

P(x,0) =⇒ f (x2+ f (0))= f (x)2. Thus, comparing P(x,0) and P(−x,0) gives f (x)2 = f (−x)2

for all x. Moreover, for any k in the range of f , k2 is also in the range.

If there is some a 6= 0 such that f (a) 6=− f (−a), then we have f (a) 6= 0 and f (a) = f (−a).
Comparing P(a,x) and P(−a,x) gives f (x+ a) = f (x− a) for all x. Thus, f is periodic and
bounded. In particular we also get that the range of f is finite.

If there’s r such that | f (r)|> 1, then f (r)2n
is in the range for all n ∈ N and so the range is

infinite - a contradiction. Thus, f (x) ∈ {1,0,−1} for all x.

If 0 is in the range, then there exists b such that f (b) = 0. P(b,y) =⇒ f (b2 + f (y)) =
f (y)− f (0). In particular, k− f (0) is in the range whenever k is in the range. Since range of
f is finite, this is impossible unless f (0) = 0. P(0,x) thus implies that f ( f (x)) = f (x) for all
x.

If 1 and −1 are also in the range, then f (1) = 1 and f (−1) =−1. P(−1,1) then implies that
f (2) = 2 whic his a contradiction.

If 1 is in the range but −1 is note, then f (1) = 1, f (−1) = 1 and f (−x) = f (x) for all



Problem 6 proposed by EpicNumberTheory 20

x. P(−1,1) implies that f (2) = 0. P(1,y) implies that f (1+ f (y)) = f (1+ y) for all y.
We can induct to prove that f (x) = x (mod 2) for all x > 0. Since f (x) = f (−x), we have
f (x) = x (mod 2) which works.

If −1 is in the range but 1 is not, then f (−1) = −1 and f (1) = −1. P(−1,0) then implies
that −1 = 1 which is not true.

If neither −1 nor 1 is in the range, then f (x)≡ 0 which works.

If 0 is not in the range, then f (x) =±1 for all x. Thus, f (x2 + f (0)) = f (x)2 = 1 for all x.

If f (0) = −1, then f (x2− 1) = 1 for all x and so f (0) = f (12− 1) = 1, a contradiction. So
f (0) = 1. Thus, f (x2 +1) = 1 for all x. In particular, f (1) = f (2) = 1.

P(1,y) implies that f (1+ f (y)) = f (1+y). Since 1+ f (y)∈ {0,2} for all y and f (0) = f (2) =
1, we have f (1+ y) = 1 for all y and so f (x)≡ 1 which works.

Else, f (x) =− f (−x) for all x 6= 0.

If f (0)= 0, then P(0,x) implies that f ( f (x))= f (x) for all x. Moreover, we have f (x2)= f (x)2.
In particular, f (1)2 = f (1) =⇒ f (1) ∈ {0,1}.

If f (1) = 0, then P(x,1) implies that f (x)2 + f (x) = f (x) f (x+ 1). In particular, for any x,
either f (x) = 0 or f (x+1) = f (x)+1.

There are two cases here. The first is that f (x)≡ 0 which is already include in the solution.
Thesecond is that there’s the largest negative c such that f (c) 6= 0. We can see that c <−1.
Thus, c+1 is still negative an so f (c+1) = 0. Hence, f (c) =−1 and so f (−c) = 1.

Since f (−c) = 1 6= 0, we can induct to get that f (c2) = c2+c+1, but since f (c2) = f (c)2 = 1,
we have c ∈ {0,−1} which is not true.

If f (1) = 1, then f (−1) =−1 and P(−1,x) =⇒ f ( f (x)+1) = 2 f (x)− f (x−1) for all x 6= 0.
We can then use induction to prove that f (x) = x for all positive x and thus f (x)≡ x which
is a solution.

We are left with the case where f (0) 6= 0. We have to subcases.

One is that there exists a root h of f . P(h,x) =⇒ f (h2 + f (x)) = f (x)− f (0). This implies
that k− f (0) is inrange of f whenever k also is. Thus, −n f (0) is in the range of f for any
n≥−1. Since −n f (0) 6= f (0) for any n≥ 0, n f (0) must also be in the range for n≥ 0. Thus,
n f (0) is in the range for any integer n.

Hence, f (h2 + n f (0)) = (n− 1) f (0) for any integer n. Thus, P(h+ n f (0),0) =⇒ (2hn+
n2 f (0)) f (0) = f (h2 + (2hn+ n2 f (0) + 1) f (0)) = f (h+ n f (0))2. This means that (2hn+
n2 f (0)) f (0) is always perfect square no matter what integer n is. This is impossible.

Else, 0 is not in the range of f . In this case, for any x,y such that x 6= 0,y 6= 0,x+ y 6= 0,
P(x,y) and P(−x,−y) implies that f (x2 + f (y))− f (x2− f (y)) = 2 f (y). We denote this with
Q(x,y).

Since f (x2 + f (0)) = f (x)2, for any x such that x2 + f (0) 6= 0 and f (x) + x2 + f (0) 6= 0,
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Q( f (x),x2 + f (0)) =⇒ f (2 f (x)2) = f (0)+2 f (x)2.

Back to the original equation. For any x,y 6= 0, P(x,y) and P(−x,y) imply that 2 f (y f (x)) =
f (x)( f (y+x)+ f (y−x)). Substituting y→ 2 f (x) imply that for any x 6= 0, either f (x)|2 f (0),
x2 + f (0) = 0, or f (x)+ x2 + f (0) = 0.

Thus, either f has finite range (which has been cleared) or there are infinitely many x such
that f (x) is a perfect square larger that |2 f (0)| and − f (0). In this case, f (x)|2 f (0) and
f (x)+ x2 + f (0) = 0 cannot be true, and x2 + f (0) = 0 may be true for at most two cases.
Thus, the statement ’for all x, either f (x)|2 f (0), x2+ f (0) = 0, or f (x)+x2+ f (0) = 0’ cannot
be true. Hence the last case has no solution.
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Chapter 3

GJMO Solution
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3.1 Problem 1 proposed by Orestis Lignos

Find the minimum possible value of the natural number x, such that:

• x > 2021

• There is a positive integer y, co-prime with x, such that x2−4xy+5y2 is a perfect square

We will prove, that the minimum possible value of x is 2029.

Knowing that x2− 4xy+ 5y2 is a perfect square, we deduce that (x− 2y)2 + y2 is a perfect
square.

Note that (x,y) = 1, hence (x−2y,y) = 1 as well, therefore we have two cases to consider:

Case 1: x−2y = m2−n2 and y = 2mn with (m,n) = 1 and m,n ∈ Z. Then, x = m2−n2 +
4mn = (m+2n)2−5n2.

We prove the following Claim:

Claim 1: x = (m+2n)2−5n2 ≥ 2029.

Proof: Suppose otherwise. Then, x≤ 2028 and x> 2021, i.e. x∈{2022,2023,2024,2025,2026,2027,2028}.

If now, 3 | x, then

3 | (m+2n)2−5n2 =⇒ 3 | (m+2n)2 +n2 =⇒ 3 | m+2n and 3 | n,

which is a contradiction since (m+2n,n) = (m,n) = 1.

Hence, we may exclude 2022,2025 and 2028 from the above list.

In addition, note that (m+ 2n)2− 5n2 ≡ 0,1,4 (mod 5), hence we may exclude 2023 and
2027.

The only possible value remaining is 2024. Suppose that (m+2n)2−5n2 = 2024.

Then, if both m+2n and n are odd, (mod 8) implies 1−5≡ 0 (mod 8), a contradiction.

Suppose now that m+2n = 2a and n = 2b. Then, a2−5b2 = 506.

Since 506 is even, a and b have the same parity.

If both are even, then 4 | (a2−5b2) = 506, a contradiction.

If both are odd, then
506 = a2−5b2 ≡ 1−5≡ 4 (mod 8),

a contradiction ¨

To the problem, it’s easy to see by some casework that taking n = 6 and m = 35 works, since
492−5 ·62 = 2029.
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Case 2: x−2y = 2mn and y = m2−n2 with (m,n) = 1 and m,n ∈ Z. Then, x = 2(m2−n2 +
mn).

We make the following Claim:

Claim 2: m2−n2 +mn≥ 1015.

Proof: Suppose otherwise. Then, since x> 2021, we obtain m2−n2+mn∈{1011,1012,1013,1014}

If 3 | (m2−n2 +mn), then if 3 - m,n then

m2−n2 +mn≡ 1−1+mn (mod 3)≡ mn (mod 3),

hence 3 | mn, a contradiction.

Therefore, 3 | m or n⇒ 3 | m,n, a contradiction since (m,n) = 1.

Hence, 3 - (m2−n2 +mn), so we may exclude 1011 and 1014.

Then, m2−n2 +mn ∈ {1012,1013}.

Thus,
4(m2−n2 +mn)≡ (2m+n)2−5n2 ≡ 0,1,4 (mod 5),

therefore m2−n2+mn≡ 0,1,4 (mod 5), hence the two remaining values are as well excluded,
since they are 2 or 3 (mod 5) ¨

Therefore, x ≥ 2030, so its minimum value is certainly larger than the previously obtained
2029.

To conclude, xmin = 2029.
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3.2 Problem 2 proposed by Phoenixfire

In phoenix, a Galaxy far, far away, there are 2021 planets and 1 sun. Define a fire to be a path
between two objects in phoenix. It is known that between every pair of planets either a single
fire burns or no burning occurs. If we consider any subset of 2019 planets, the total number
of fires burning between these planets is a constant. If there are F(P) fires in phoenix, then
find all possible values of F(P).

We consider the general case with n planets. Let K denote the constant number of fires
burning in any subset of n−2 planets and let fi j ∈ {0,1} denote the number of fires burning
between planet i and planet j. Finally, for i = 1,2, . . . ,n let fi denote the total number of fires
burning to planet i.

Note that

F(P) ≤
(

n
2

)
=

n(n−1)
2

.

Clearly,
n

∑
i=1

fi = F(P) and ∑ fi j = F(P)

where the latter sum is over all 2-element subsets {i, j} of the set {1,2, . . . ,n}. The number
of fires burning to at least one of the planets with number i or j is equal to fi+ f j− fi j. Thus,
for any 2-element subsets {i, j} ⊂ {1,2, . . . ,n}, we have

K = F(P)− fi− f j + fi j.

Adding all these equations for every 2-element subset {i, j} yields(
n
2

)
K =

(
n
2

)
F(P)−2(n−1)F(P)+F(P)

which may be written as
n(n−1)K = (n−2)(n−3)F(P).

Note that both n(n−1) and (n−2)(n−3) are divisible by 2, and that the only integer k > 2
which divides both n(n−1) and (n−2)(n−3) is 3, this latter case occurring if and only if n

is divisible by 3. Since 3 does not divide 2021, in the situation of the given problem
n(n−1)

2

and
(n−2)(n−3)

2
are coprime. Hence, F(P) is a multiple of

n(n−1)
2

.

As F(P) ≤
n(n−1)

2 with equality when a fire burns between all the pairs of planets, the only

possibilities are F(P) =
n(n−1)

2
or F(P) = 0. Therefore, the total number of fires is

F(P) =
2020 ·2021

2
or F(P) = 0.
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3.3 Problem 3 proposed by Aritra12

Let ra,rb,rc denote the radius of the excircles of 4ABC having sides a,b,c. If R,r are the
usual notations for circumradius and inradius then prove that

4[ABC]√
ab+

√
bc+
√

ca
≤ R2

∑
hc

ra · rb

(
cos

A
2

)4

where h denotes altitude , [x] denotes area of x

We know the basic inequalities mitronivic & euler’s Inequality such as 3
√

3R≥ 2s and R≥ 2r,
are true, by multiplying them we get

3
√

3R2 ≥ 4[ABC] =⇒ squaring both sides =⇒ 27R4 ≥ 16[ABC]2

which means that
27R4 ≥ 16[ABC]2

using the identity [ABC] = abc
4R it can be written as

27 ·4R[ABC]≥ 64[ABC]3

R3 =⇒ 27abcR3 ≥ 64[ABC]3

so its true that
3 3√abc≥ 4[ABC]

R
By AM-GM we can say that ,

√
ab+

√
bc+
√

ca≥ 3(abc)
1
3

√
ab+

√
bc+
√

ca≥ 3(abc)
1
3 ≥ 4[ABC]

R
So it’s not wrong that

1√
ab+

√
bc+
√

ca
≤ R

4[ABC]

4√
ab+

√
bc+
√

ca
≤ 4R

4[ABC]

Since 4R+ r > 4R
4√

ab+
√

bc+
√

ca
≤ 4R+ r

4[ABC]

We will denote the above as (∗),

Now note that,

4R+ r = ∑
cos4 A

2
hc

rarb
cos4 A

2
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Since
2∑

rbrc

ha
= 2∑ra−2(4R+ r) or ∑

rbrc

ha
= 4R+ r

and

∑
cos4 A

2
hc

rarb
cos4 A

2

≥
(
∑cos2 A

2

)2

∑
hc

rarb
cos4 A

2

=⇒ ∑
hc

rarb
cos4 A

2
≥ 4R+ r

4R2

=⇒ 4R2
∑

hc

rarb
cos4 A

2
≥ 4R+ r

Now taking (∗) in action we know that

16[ABC]√
ab+

√
bc+
√

ca
≤ 4R+ r

16[ABC]√
ab+

√
bc+
√

ca
≤ 4R+ r ≤ 4R2

∑
hc

rarb
cos4 A

2

16[ABC]√
ab+

√
bc+
√

ca
≤ 4R2

∑
hc

rarb
cos4 A

2

that is
4[ABC]√

ab+
√

bc+
√

ca
≤ R2

∑
hc

rarb
cos4 A

2

Proved .



Problem 4 proposed by Orestis Lignos 28

3.4 Problem 4 proposed by Orestis Lignos

On the board n positive integers are written, let them be a1,a2, . . . ,an. Let p,q be two prime
numbers such that p 6= q. We are allowed to execute infinitely many times the following
procedure: We pick two numbers a,b written on the board, we delete them and replace them
with pa− qb, pb− qa. After 2021 applications of this procedure, let k be the product of all
numbers on the board that time. If we know that k(p−1)(q−1) 6≡ 1 (mod pq), then prove that
there exists a i ∈ {1,2, . . . ,n}, such that either p|ai or q|ai.

We make firstly the following Claim:

Claim— Either p or q divides k.

Proof: Suppose not. Then, by Fermat’s Little Theorem,

kp−1 ≡ 1 (mod p)

and
kq−1 ≡ 1 (mod q),

therefore
k(p−1)(q−1) ≡ 1 (mod p)

and
k(p−1)(q−1) ≡ 1 (mod q),

hence k(p−1)(q−1) ≡ 1 (mod pq), which is contradictive to the problem hypothesis ¨

Suppose WLOG that p | k. Then, there exists a number on the board that time that is divisible
by p. Let this number be m.

Then, m = pa−qb or m = pb−qa for some a,b that were on the board on the previous move.

In any case, since p 6= q by the problem statement, we deduce that at least one number on
the board is divisible by p in the previous move.

Going now continually backwards, we obtain that at least one number on the board initially is
a multiple of p, as desired
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3.5 Problem 5 proposed by i3435

In a4ABC, let K be the intersection of the A-angle bisector and BC. Let H be the orthocenter
of 4ABC. If the line through K perpendicular to AK meets AH at P, and the line through
H parallel to AK meets the A-tangent of (ABC) at Q, then prove that PQ is parallel to the
A-symmedian

Note: The A-symmedian is the reflection of the A-median over the A-angle bisector).

Let V be the intersection of the tangent to (ABC) at A and BC. ]VAK =]VAB+]BAK =
]ACB+]BAK and ]KVA = ]BVA = ]BAV +]V BA = ]CBA−]ACB. Since 2]VAK =
2]ACB+]BAC = ]ACB−]CBA = −]KVA, VA = V K. Letting T be the reflection of A
over V , we see that K−P−T .

Let M be the midpoint of BC, let D be the foot from A to BC, and let X be the midpoint
of AH. Let Y be the intersection of (DXM)(which is the 9-point circle) and AM. ]AY X =
]MDA= 90. Let HA and A′ be the reflections of H over D and M respectively. It is well known
that HA and A′ lie on (ABC), and that A′ is the antipode of A on (ABC). ]DYA = ]DY M =
]DXM = ]HAAA′ = ]BAC− 2(90−]CBA) = ]BAC+ 2]CBA = ]CBA−]ACB = ]DVA,
so V,A,Y,D are cyclic. Since ]AYV = ]ADV = 90, T −X −Y , so V X ⊥ AM. This means
that T H ⊥ AM.

]T QH = ]TAK = ]AKV = 90−]HAK = ]T PH, so Q,H,P,T are concyclic. ]PQH =
]PT H = ]KAM, thus PQ is parallel to the reflection of the A-median over the A-angle
bisector, as desired.
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3.6 Problem 6 proposed by Orestis Lignos

Let S = {1,2, . . . ,n}, with n ≥ 3 being a positive integer. Call a subset A of S gaussian if
|A| ≥ 3 and for all a,b,c ∈ A with a > b > c,

a2

b2 +
b2

c2 +
c2

a2 < 5

holds true.

• Prove that |A| ≤
⌊n+2

2

⌋
for all gaussian subsets A of S.

• If a gaussian subset of S contains exactly
⌊n+2

2

⌋
elements, then find all possible values

of n.

(i) Let A = {a1,a2, . . . ,ak} be a gaussian subset of S with ai < a j when i < j. We contend
that ax +ay > az for all x,y,z≤ k.

Indeed, if ax ≥ az or ay ≥ az, then the result is clear. Suppose henceforth that az > ay > ax.

Then, consider the function

f (x) =
x2

a2
y
+

a2
y

a2
x
+

a2
x

x2 ,

with x≥√axay.

The above function has a positive derevative, since

f ′(x) =
2x
a2

y
− 2a2

x
x3 =

2(x4− (axay)
2

a2
yx3 ≥ 0,

therefore it is strictly increasing at [√axay,+∞).

Now, note that if az > ax +ay, then

az > ax +ay ≥ 2
√

axay >
√

axay,

implying that f (az)> f (ax +ay).

From the problem’s condition, though, we notice that f (az)< 5, therefore f (ax+ay)< f (az)<
5. Let ax

ay
= t.

Then, f (ax +ay)< 5 easily rewrites as

(t +1)2 +
1
t2 +

1
(1

t +1)2
< 5,

which in turn after manipulation rewrites as (t3+2t2− t−1)2 < 0, which is clearly impossible.
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Therefore, ax +ay > az, or equivalently ax +ay ≥ az +1, for all x,y,z≤ k.

Thus,
a1 +a2 ≥ ak +1≥ a2 + k−1 =⇒ a1 ≥ k−1,

therefore

n≥ ak ≥ a1 + k−1≥ 2k−2 =⇒ k ≤
⌊

n+2
2

⌋
,

which evidently implies the desired conclusion.

(ii) We initially prove two Claims that will be used later.

Claim 1:
d2

b2 +
b2

c2 +
c2

d2 >
a2

b2 +
b2

c2 +
c2

a2 for all d > a > b > c > 0. Proof: After manipulation

it rewrites as (d2−a2)((ad)2− (bc)2)> 0, which trivially holds ¨

Claim 2:
a2

b2 +
b2

d2 +
d2

a2 >
a2

b2 +
b2

c2 +
c2

a2 for all a > b > c > d > 0. Proof: After manipulation

it rewrites as (c2−d2)((ab)2− (cd)2)> 0, which trivially holds ¨

Now, to the problem, we distinguish two cases.

Case 1: n is even. Then, let n = 2m and note that |A|= m+1, that is, S = {a1,a2, . . . ,am+1}.

Note that, as in the first part, a1 +a2 ≥ am+1 +1, hence

a1 +a2 ≥ am+1 +1≥ a2 +m−1+1 =⇒ a1 ≥ m,

therefore
2m≥ am+1 ≥ a1 +m≥ 2m,

thus equality must hold, implying that A = {m,m+1, . . . ,2m}.

We prove the following Claim:

Claim 3:
(2m)2

(2m−1)2 +
(2m−1)2

m2 +
m2

(2m)2 ≥
i2

j2 +
j2

k2 +
k2

j2 for all i > j > k such that i, j,k ∈ A.

Proof: According to Claims 1 and 2, in order to maximize i2
j2 +

j2

k2 +
k2

j2 , we need to take i as
large as possible, and k as small as possible. Hence, let i = 2m,k = m and we just need to
prove

(2m)2

(2m−1)2 +
(2m−1)2

m2 +
m2

(2m)2 ≥
(2m)2

j2 +
j2

m2 +
m2

(2m)2 ,

for all m+1≤ j ≤ 2m−1.

The above rewrites as

((2m−1)2− j2)([(2m−1) j]2− (2m2)2)≥ 0,

which holds true, since the first parenthesis is nonnegative, since 2m− 1 ≥ j, while for the
second one,

(2m−1) j ≥ (2m−1)(m+1) = 2m2 +m−1≥ 2m2,
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hence we are done ¨

To the problem, in order for A to be a gaussian subset, by Claim 3 we just need to have

(2m)2

(2m−1)2 +
(2m−1)2

m2 +
m2

(2m)2 < 5,

which after solving gives m≤ 11, that is, n ∈ {4,6,8, . . . ,22} .

Claim 2: n is odd. Then, let n= 2m+1 and note that |A|=m+1, that is A= {a1,a2, . . . ,am+1}.

As before, we prove that a1 ≥ m. Since am+1 ≤ 2m+1, we have

a1 ≤ am+1−m = m+1,

therefore a1 ∈ {m,m+1}.

Subcase 1: a1 = m+1. We have equality, hence A = {m+1, . . . ,2m+1}.

In a similar manner as before (using Claims 1 and 2), we deduce that

i2

j2 +
j2

k2 +
k2

j2

maximizes when i = 2m+1, j = 2m,k = m+1, which after solving implies that m≤ 25.

Hence, solutions in this case are all n ∈ {5,7, . . . ,51} .

For brevity, call the above set M.

Subcase 2: a1 = m. Then, 2m+1≥ am+1 ≥ 2m, hence am+1 ∈ {2m,2m+1}.

We have two cases to consider.

• am+1 = 2m. Then, A = {m,m+1, . . . ,2m}, which is identical to Case 1, hence m≥ 11. The
resulting solutions belong to set M.

• am+1 = 2m+1. Then, 2m−1≤ am ≤ 2m, hence am ∈ {2m−1,2m}.

− In the first case, by the above logic we should have

(2m+1)2

(2m−1)2 +
(2m−1)2

m2 +
m2

(2m+1)2 < 5,

which implies m≤ 7, hence the solutions emerging are covered by set M.

− In the second case, by the above logic we should have

(2m+1)2

(2m)2 +
(2m)2

m2 +
m2

(2m+1)2 < 5,

which rewrites as (2m2 +4m+1)2 < 0, hence no solutions in this case.

To conclude, the set of solutions is

{4,6, . . . ,22} ∪ {5,7, . . . ,51}= {4,5, . . . ,23} ∪ {25,27, . . . ,49,51}.
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Aliter: For part (i), assume that the statement is false, then there is a guassian set with at
least n+3

2 members, and thus, the ratio (r) between the maximum (M) and the minimum (m)
elements of the set is at least 2n

n−1 .

Consider an element x of the gaussian set that is not m nor M. Let x
m = y and M

x = z, then we
must have yz = r and y2 + z2 < 5− 1

r2 . After calculation, we get that A−B
2 < y < A+B

2 where

A =
√

5− 1
r2 +2r and B =

√
5− 1

r2 −2r.

This means that the maximum and minimum elements of the gaussian set (not counting M
and m) must be less than Bm apart, so the gaussian set has size less than Bm+3.

Thus, n+3
2 < Bm+ 3 =⇒ n−3

2 < Bm ≤
√

5−
(n−1

2n

)2−
( 4n

n−1

)
× n−1

2 <

√
(n−5)(n−1)

2 , which is
not true - a contradiction.

(Note that we use the fact that f (r) = 2r+ 1
r2 is increasing when r ≥ 1.)

For (ii), we first prove three lemmas:

For any a > b > c, a2

b2 +
b2

c2 +
c2

a2 ≥ a2

b2 +
b2

(c+1)2 +
(c+1)2

a2

This is equivalent to b2

c2(c+1)2 (2c+1)≥ 2c+1
a2 , which is true.

For any a > b > c, a2

b2 +
b2

c2 +
c2

a2 ≤
(a+1)2

b2 + b2

c2 +
c2

(a+1)2

This is equivalent to c2

a2(a+1)2 (2a+1)≤ 2a+1
b2 , which is true.

If a > b > c, then a2

b2 +
b2

c2 +
c2

a2 ≥ a2

(b+1)2 +
(b+1)2

(c+1)2 +
(c+1)2

a2

This is true since b
c > b+1

c+1 and
(

a2

b2 − a2

(b+1)2

)
+
(

c2

a2 −
(c+1)2

a2

)
= a2(2b+1)

b2(b+1)2 − 2c+1
a2 ≥ 0

From these lemmas, we can conclude that a set is gaussian if the inequality is satisfied when
we choose a as the maximum element c as the minimum element, and b be the element such
that min{a

b ,
b
c} is the smallest (which maximize the sum). We will consider two cases based

on parity of n.

If n≥ 4 is even, then any gaussian set with n+2
2 member must have n as a member. (Else, it’s

a subset of {1,2, ...,n−1} and we can use (i) to get contradiction.)

In this case, among the n
2 left members, some pair of them are at least n

2 −1 apart, and so,
by the two lemmas, we must have

n2

(n−1)2 +
(2n−2)2

n2 +
1
4
< 5 =⇒ n2

(n−1)2 >
19−

√
105

8
=⇒ 2

n−1
+

1
(n−1)2 >

11−
√

105
8

This is true when n≤ 22 as 2
21 > 11−

√
105

8 , but not true for n≥ 24 as 11−
√

105
8 > 1

11 > 2
23 +

1
529 .

To prove that any even number 4≤ n≤ 22 satisfies the condition, simply choose {n
2 , ...,n−1,n}
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as the gaussian set and note that n
n−1 ≤

n
2+1

n
2
.

For odd number, n = 3 doesn’t satisfy the condition, and 5 ≤ n ≤ 23 work by choosing the
same gaussian set with previous case. For higher n, the gaussian set must have n as an element.
Similar to the previous case, we must have

n2

(n−1)2 +
(2n−2)2

(n+1)2 +
(n+1)2

4n2 < 5

or, equivalently
2

n−1
+

1
(n−1)2 +

16
(n+1)2 +

1
4
+

1
2n

+
1

4n2 <
16

n+1

This is false for n ≥ 53 as 2
n−1 +

1
4 +

1
2n > 16

n+1 , and for 25 ≤ n ≤ 51, this is true as 16
n+1 −( 2

n−1 +
1
4 +

1
2n

)
> 20

n2−1 and 1
(n−1)2 +

16
(n+1)2 +

1
4n2 <

19
n2−1 .

Again, simply take the set {n+1
2 , ...,n−1,n} as example and note that n

n−1 ≤
n+3

2
n+1

2
.

Thus, the answer is {4,6, ...,22}∪{5,7, ...,51}.
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Chapter 4

Results
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4.1 GAMO Results

We received a total of 24 submissions: 13 for GAMO and 11 for GJMO.

The GAMO leadearboard is presented below , we congratulate all the participants of GAMO
specially the first, first runner up and second runner up that is

• ywq233

• k12byda5h

• korncrazy.

GAMO 2021 Leaderboard

AoPS Ranking Day 1 Day 2 Total
Username Position A-1 A-2 A-3 A-4 A-5 A-6 Score

ywq233 1 7 7 7 6 7 2 36
k12byda5h 2 7 7 7 6 7 0 34
korncrazy 3 7 7 7 6 7 0 34

L567 4 7 6 0 7 7 4 31
Pitagar 5 7 7 0 7 7 0 28
hyay 6 7 7 0 6 0 7 27

chirita.andrei 7 7 0 7 6 7 0 27
KaiDaMagical336 8 7 7 0 7 0 5 26

bluelinfish 9 7 6 0 7 0 0 20
DreamDream 10 7 0 0 7 0 0 14
LTH-0- 11 3 0 0 6 0 0 413
FAA2533 12 0 0 3 0 0 0 3
Ucchash 13 0 0 0 0 0 1 1

GAMO Results
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4.2 GJMO Results

The GJMO leadearboard is presented below , we congratulate all the participants of GJMO
specially the first, first runner up and second runner up that is

• Pitagar

• bluelinfish

• L567.

GJMO 2021 Leaderboard

AoPS Ranking Day 1 Day 2 Total
Username Position J-1 J-2 J-3 J-4 J-5 J-6 Score

Pitagar 1 7 7 7 7 7 7 42
bluelinfish 2 7 7 7 7 0 7 35

L567 3 7 7 0 7 6 2 29
DreamDream 4 0 6 0 7 7 0 20
NTFEGAC 5 7 3 0 7 0 2 19
Anonymous 6 7 0 0 7 0 3 17
IMOTC 7 0 0 0 7 0 0 7
hemlock 8 0 0 0 7 0 0 7
UKR3IMO 9 0 0 0 7 0 0 7
ishan3.14 10 0 6 0 0 0 0 6

Souparna(NAoPS) 11 0 0 0 6 0 0 6
GJMO Results

Note that NAoPS means not a member of AoPS.
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Problem Proposers

USAMO IMO Team Members of Gaussian Curvature

Problem Selection Committee

Aritra12 Orestis Lignos TLP.39

EpicNumberTheory Phoenixfire Anonymous

GAMO & GJMO Graders

Aritra12 Orestis Lignos TLP.39

EpicNumberTheory Phoenixfire i3435

Anonymous

Test Solvers

Test Solver Team of Gaussian Curvature

Participants(Sign Ups)

L567, bluelinfish3, Pitagar, Ninjasolver0201, IMOTC, weaving2, UKR3IMO9, hyay10, Is-
han3.14, franzliszt, PlaneGod, Souparna, DrYouKnowWho, kattyames, sparkaks, jasperE3,
Pluto04, CaptainLevi16, DebayuRMO, mufree, iman007, superagh, LTH-0-, Mop2018, shalom-
rav, ike.chen, JustinLee2017, Dreamdream, Paradoxes, Mattii, Wisphard, Sohil_Doshi, NT-
FEGAC, ucchash, FAA2533, B1002342, Interstigation, The_Musilm, Enthurelx, deepakies,
Abrar_Sharia, Samariun_42, rafaello, third_one_is_jerk, ashraful7525, korncrazy, chirita.andrei,
molecules_mal, Lorgenoob9696, Com10atorics, k12byda5h, hakN, MathLuis, RADHEY_123


